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Abstract.-This article describes two general metapopulation models with spatial variation in 
the sizes of habitat patches. The first model is a simple, nonstructured model that includes the 
mainland-island and Levins models as two limiting cases. The second model is a structured 
model explicitly including the size distribution of habitat patches, the size distribution of local 
populations, and migration among local populations. The models may have up to four equilibria, 
including two stable, positive equilibria. We discuss the core-satellite species hypothesis in light 
of these models. This hypothesis predicts that the distribution of patch-occupancy frequencies 
is bimodal in many species assemblages. We extend the original concept by demonstrating that 
the bimodal distribution of patch-occupancy frequencies can be generated by structurally more 
complex and more realistic metapopulation models than the original one; that the bimodal 
distribution is predicted by deterministic models, with no or infrequent switches of species 
between the core and the satellite state; and that metapopulation extinctions of rare species may 
be compensated by migration from outside the metapopulation (from a mainland), or metapopu- 
lation extinction may be prevented by low extinction probabilities of local populations in large 
or high-quality habitat patches. In every case the bimodal core-satellite distribution is due to 
the rescue effect, that is, the increasing migration rate and hence the decreasing probability of 
local extinction with an increasing fraction of patches occupied. We discuss how the metapopula- 
tion dynamic mechanisms described in this article may generate the bimodal core-satellite distri- 
bution in different kinds of communities. 

Andrewartha and Birch (1954, p. 657), among others, pioneered the view that 
"a natural population occupying any considerable area will be made up of a 
number of . .. local populations." Levins (1970) coined the term metapopulation 
for an assemblage of local populations connected by migration. Metapopulation 
dynamics is currently receiving increasing attention in population ecology (Han- 
ski 1985; Hastings 1990; Gilpin and Hanski 1991) and conservation biology (Quinn 
and Hastings 1987; Gilpin 1988). 

Theoretical analyses of metapopulations have used two models, based on dif- 
ferent assumptions about the structure of the environment. The mainland-island 
model assumes a large and invulnerable source population on the "&mainland," 
from which individuals migrate to smaller habitat patches ("islands") with more 
transient populations (fig. 1). In this model, there may or may not be migration 
among the island populations; the former case is often referred to as stepping- 
stone dispersal or migration. The equilibrium theory of island biogeography (Mac- 
Arthur and Wilson 1967) is a multispecies version of the mainland-island model. 
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FIG. 1.-Distribution of patch sizes in the simple model when b = 0 (the mainland-island 
model), 0 < b < 1 (spatial variation in patch sizes), and b = 1 (the Levins model). The 
dashed line delimits the system of patches inhabited by the metapopulation and included in 
the calculation of P, the fraction of patches occupied. Arrows give examples of individuals 
moving from one patch to another. 

In contrast, Levins's (1969, 1970) metapopulation model assumes a set of equally 
large habitat patches, or islands, with local populations frequently going extinct 
and the vacated patches being recolonized from the currently occupied set of 
patches; there is no mainland in this model (fig. 1). The Levins model has been 
extended in various ways to describe single-species (Hanski 1985, 1991; Hastings 
and Wolin 1989; Gyllenberg and Hanski 1992), competitive (Horn and MacArthur 
1972; Slatkin 1974; Hanski 1983; Hanski and Ranta 1983), and predator-prey 
metapopulation dynamics (Vandermeer 1973; Hastings 1977; Zeigler 1977; Sabelis 
et al. 1991). 

Although the two models are occasionally contrasted as alternatives, a more 
useful perspective is to consider them as the two extremes of a continuum, de- 
fined by increasing the size range of habitat patches (fig. 1). Most species in 
nature occur in environments that are intermediate between the two extremes: 
there is significant spatial variation in habitat patch sizes, even if there is no true 
mainland, where the local population never goes extinct (Harrison 1991). There- 
fore, it is important to develop concepts and models that bridge the gap between 
the mainland-island and Levins models. 
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TWO GENERAL METAPOPULATION MODELS 19 

The purpose of this article is twofold. We shall first describe and analyze two 
general metapopulation models that allow for spatial variation in habitat patch 
size. The first one is a simple, phenomenological model that has the models of 
MacArthur and Wilson (1967) and Levins (1969) as two limiting cases (see Gotelli 
1991 for a comparison of these and two other simple metapopulation models). 
The second model is a structured metapopulation model that takes into account 
spatial variation in patch size and the effect of migration on local dynamics in a 
more mechanistic manner than the simple model. The structured model contains, 
as special cases, our structured model (Gyllenberg and Hanski 1992) for identical 
patches and a mainland-island type model. We shall then use these models to 
reconsider the core-satellite species hypothesis (Hanski 1982a), which predicts 
that many species assemblages show a bimodal distribution of patch-occupancy 
frequencies; that is, at any given time most species are present in either most 
patches or only a small fraction of patches. Several authors have attempted to 
test the model (see especially Hanski 1982c; Gotelli and Simberloff 1987; Gaston 
and Lawton 1989; Collins and Glenn 1990, 1991). Our message in this article is 
that there are alternative metapopulation dynamic mechanisms that may create 
the bimodal core-satellite distribution and that different mechanisms may operate 
in different kinds of species assemblages. 

A PHENOMENOLOGICAL MODEL WITH SPATIAL VARIATION IN PATCH SIZE 

Consider a species that inhabits a system of habitat patches with different sizes. 
Let P denote the fraction of occupied patches. Assuming realistically that the 
average size of local populations increases with patch size and that the extinction 
probability decreases with increasing average population size (Schoener and 
Spiller 1987; Hanski 1991 and references therein), the pattern of patch occupancy 
at any one time is nonrandom, the incidence of the species (Diamond 1975) in- 
creasing with patch size (references to many metapopulation examples are cited 
in Hanski 1991). In this case, the rate of extinction per occupied patch decreases 
with decreasing P, as the species becomes confined to the patches with the lowest 
extinction probabilities when P decreases. The rate of colonization per unoccu- 
pied patch is an increasing function of P, because new populations are established 
by individuals moving from the occupied patches to currently empty ones. How- 
ever, the greater the spatial variation in patch sizes, the faster the rate of coloniza- 
tion per unoccupied patch approaches its maximum value with increasing P, 
because, with increasing spatial variation in patch sizes, an increasing fraction 
of migrants originates from a few large populations. The following model of P 
incorporates the above assumptions about the colonization and extinction rates: 

dP/dt = mL[( + a)P/(a + P)](1 - P) - e[a/(1 + a) + P/(a + P)]P, (1) 

where m and e are the colonization and extinction parameters, respectively, and 
a is a parameter describing the range of patch sizes. With increasing value of a 
the frequency of larger patches decreases, and hence the colonization rate per 
unoccupied patch decreases. Setting a = 0 yields 

dPIdt = m(1 - P) - eP, (2) 
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which is the mainland-island model: all unoccupied patches (fraction 1 - P) 
have the same probability of being colonized by migrants originating from the 
mainland (note that the mainland population is not included in P; fig. 1), and all 
local populations have the same extinction probability. Setting a = oc yields the 
Levins model, 

dPIdt = mP(1 - P) - eP, (3) 

in which colonization occurs from the currently extant set of local populations. 
In the Levins model, all local populations are equally large, and hence the coloni- 
zation rate per unoccupied patch is a linearly increasing function of P. The extinc- 
tion term is the same in both models. With intermediate values of a, the extinction 
rate is lower than in either extreme given by equations (2) and (3), because with 
intermediate values of a the frequency of larger patches (included in P) is greater 
(fig. 1). 

The implications of the general model are more transparent if we substitute 
b = a/(1 + a) and rearrange the terms in equation (1): 

dP/dt = {P/L[b + (1 - b)P]}{m(1 - P) - e[b2 + (1 - b2)P]}. (4) 

The model has two equilibria, 0 and (mle - b2)/(1 + mle - b2). Setting b = 0 
and b = 1 yields the nontrivial equilibria of the mainland-island and Levins 
models, respectively, m/(m + e) and 1 - elm. 

THE RESCUE EFFECT 

The above model assumes that local dynamics occur on a much faster time scale 
than metapopulation dynamics (all patches are either empty or fully occupied) and 
that migration has no effect on local dynamics apart from the colonization events. 
These assumptions, which are unrealistic for most metapopulations in nature, can 
be relaxed in structured metapopulation models (Gyllenberg and Hanski 1992), 
and we shall use this approach in the next section. One likely consequence of 
assuming that local and metapopulation time scales are not very different and 
that migration affects local dynamics is a positive relationship between P and the 
average size of local populations (Hanski 1985, 1991; Gyllenberg and Hanski 
1992). A positive relationship between P and average population size has been 
frequently observed in multispecies assemblages (Hanski 1982a; Brown 1984; 
Hanski et al. 1993), but our point is that it can also be expected in single-species 
dynamics. Increasing average population size typically decreases extinction prob- 
ability (Hanski 1991 and references therein). Given a positive relationship be- 
tween P and average population size, we would therefore expect a negative rela- 
tionship between P and the probability of local extinction. This relationship has 
been observed for multispecies assemblages (fig. 2) (Hanski 1982a), but once 
again we suggest that it also occurs in single-species dynamics. 

We call the decreasing rate of extinction of local populations with increasing 
P the "rescue effect." The rescue effect is generated by two processes: the 
decreasing risk of local extinction with increasing immigration rate, as originally 
envisioned and demonstrated by Brown and Kodric-Brown (1977), and the in- 
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FIG. 2.-Probability of local extinction against the number of extant populations (P) in 

mangrove island insects (data from Simberloff 1976). Each dot gives the average for many 
species. All habitat patches were roughly the same size. 

creasing immigration rate per patch with increasing P. In the scalar model of 
equation (4), the rescue effect may be incorporated, albeit in a nonmechanistic 
manner, by multiplying the extinction term with a decreasing function of P. We 
have used the exponential function for that purpose (Hanski 1991). Dividing fur- 
ther both sides of equation (4) by e (scaling time with the extinction rate) yields 
the final model, 

dP/dt = {P/(b + (1 - b)P]}{m(1 - P) - [b2 + (1 - b2)P]Pe-CP}, (5) 

where c describes the strength of the rescue effect (no rescue if c = 0) and where 
m sets the relative colonization rate (relative to extinction rate). 

EQUILIBRIA AND THEIR STABILITY 

The model (eq. [5]) has three parameters that describe the species' relative 
colonization rate (m), the degree of spatial variation in patch sizes (b), and the 
strength of the rescue effect (c), respectively. In the following section we shall 
examine how the stability of the model equilibria is affected by the three parame- 
ters. The salient results are summarized in figures 3 and 4, which give the bifurca- 
tion diagrams for four particular cases, with much and little spatial variation in 
patch sizes and with strong and weak rescue effects, respectively. 

Apart from the trivial equilibrium, which corresponds to metapopulation ex- 
tinction, the model may have one, two, or three other equilibria. It can be shown 
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FIG. 3.-Equilibria of the simple model, eq. (5), for four combinations of parameters: a, 
b = 0.1 (much spatial variation in patch sizes), c = 1.0 (weak rescue effect); b, b = 0.9 
(little spatial variation in patch sizes), c = 1.0; c, b = 0.1, c = 3.0 (strong rescue effect); 
and d, b = 0.9, c = 3.0. These bifurcation diagrams give the equilibrium fraction of patches 
occupied (P*) as a function of colonization rate (m). Branches marked with the letter s 
correspond to stable equilibria and branches marked with u correspond to unstable equilibria. 
Note that there are alternative stable equilibria for a limited range of m values in d. 

that, of the positive equilibria, the one with the largest value of P is stable (figs. 
3 and 4) (see also Hanski 1985; Hastings 1991; Gyllenberg and Hanski 1992). 
Equation (5) has therefore no, one, or two stable, positive equilibria, depending 
on the values of the parameters b, c, and m. 

The key consequence of increasing the importance of larger patches (decreasing 
b) is to allow metapopulation survival with smaller values of m (fig 3): rare 
species with small P survive in the largest patches, where local populations tend 
to be large and hence have small extinction probabilities. Alternatively, instead 
of varying the size of habitat patches, one could vary their quality, rare species 
being confined to the best-quality patches. In any case, the rescue effect enhances 
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FIG. 4.-As fig. 3, but for much spatial variation in patch sizes (b =0. 1) and a very strong 
rescue effect (c = 6.0). Compare with fig. 3c with weaker rescue effect (note the different 
scale on the horizontal axis). 

the survival of local populations when P is large and may create alternative 
equilibria (figs. 3 and 4). Assuming realistically that the distribution of species' 
relative colonization rates (in) is unimodal in an assemblage of species, the rescue 
effect may transform this unimodal distribution to a bimodal distribution of P 
values, because most m values generate either a small or a large value of P. (If 
all species have very small or large values of mn, the corresponding P values may 
naturally be all small or large, but in no case should the P distribution peak at 
an intermediate value.) Figure 5 gives a numerical example in which all species 
have a small value of P without the rescue effect, but with increasing rescue 
effect the distribution of P values becomes bimodal. 

In the following section we analyze a more detailed metapopulation model, in 
which spatial variation in patch sizes and the dynamics of local populations are 
explicitly taken into account. Our purpose is to generalize the previous results 
with a structurally more realistic model. The final section on the core-satellite 
species hypothesis is, however, comprehensible on the basis of the previous 
nonstructured model. 

A STRUCTURED METAPOPULATION MODEL 

Let y denote the size (carrying capacity) of a patch, and let n(y) be the patch 
size distribution. We assume that n is normalized, that is, 

fn(y)dy = 1 . (6) 
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FIG. 5.-Effect of the rescue effect on the distribution of P values in the simple model, 

eq. (5). This example assumes large differences in habitat patch sizes (b = 0.1). For each 
value of c (the rescue effect), P values were generated for an assemblage of 300 species with 
m distributed lognormally (average = - 1.0, SD = 0.5). Other unimodal distributions could 
be used instead without changing the conclusions qualitatively. The size of the black dot is 
proportional to the logarithm of the number of species with a P value given on the vertical 
axis. 

For convenience the minimum patch size is taken to be equal to one. The normal- 
ized size distribution of empty patches at time t is denoted by e(t,y). An occupied 
patch is characterized by its size y and the size x of its local population. The 
normalized (x,y) distribution of occupied patches at time t is denoted by p(t,x,y). 
Observe that 

f1p(t,x,y)dx + e(t,y) = n(y) (7) 

for all t. The number P(t): = f71 f p (t,x,y)dxdy is the fraction of occupied patches 
at time t. 

Let g(x,y) denote the growth rate, due to births and deaths only, of a local 
population inhabiting a patch of carrying capacity y. By the interpretation of 
carrying capacity we assume that g(x,y) > 0 for x <Ky and g(x,y) < 0 for x > y. 
The most commonly used expression for g is the logistic function 

g(x,y) = rx(1 - x). (8) 

In addition to births and deaths local dynamics are affected by migration. Let 
y(x,y) denote the emigration rate. If emigration is density-independent, we have 

y(x,y) = kx (9) 
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for some constant k. Emigration may also be density-dependent; for instance, it 
may be proportional to density: 

y(x,y) = kx- (10) 
y 

for some constant k. 
Let D(t) be the number of migrants per patch at time t and let a. be the rate at 

which migrants arrive at a patch. This means that per unit of time oD(t) migrants 
arrive at some patch. The probability of arriving at a certain patch may depend 
on its carrying capacity. To model this we introduce the nonnegative function 
p(y) with the following interpretation. Per unit of time, ov(y)D(t) migrants arrive 
at a patch of size y. Since the size distribution of patches is n(y) we must assume 

f (y)n(y)dy = 1. (11) 

Migrants have a greater probability of landing at a patch with a greater value of 
,(y). It is often reasonable to assume that 4 is an increasing function of patch 

size y. If 4,(y) is exactly equal to one, then migrants choose their new patch at 
random, independently of patch size. 

The dynamics of a local population inhabiting a patch of carrying capacity y 
are thus described by the ordinary differential equation 

dx= g(x,y) - y(x,y) + otq(y)D(t). (12) 

Let j(x,y) be the extinction rate of a local population of size x inhabiting a patch 
of size y. The patch balance equation is given by the partial differential equation 

- p(t,x,y) +a {[g(x,y) - y(x,y) + oa4(y)D(t)]p(t,x,y)} at ax (13) 
= - i(x,y)p(t,x,y). 

Colonization of empty patches is described by a boundary condition supple- 
menting equation (13). Let ((y) be the rate (per migrant per patch and empty 
patch) of successful colonization. Then we have 

[g(l,y) - y(l,y) + a_q(y)D(t)]p(t,1,y) = f(y)D(t)[n(y) - 7p(t,x,y)dx], (14) 

since by equation (7) e(t,y) = n(y) - f' p(t,x,y)dx. The balance equation for 
migrants is given by 

dD) 
dt = -(ot + v)D(t) + y (x,y)p(t,x,y)dxdy, (15) 

where v is the death rate of migrants. 
Equations (13)-(15) equipped with appropriate initial conditions constitute our 

model. A rigorous derivation of these equations depends on a limiting procedure, 
which we explain in detail elsewhere (Gyllenberg and Hanski 1992) and which 
justifies, mathematically, the presence of empty patches in spite of a continuous 
flow of migrants among the patches. Biologically, several mechanisms may keep 
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the rate of colonization of empty patches low in spite of much migration, including 
various local Allee effects (e.g., low probability of mating at low density), conspe- 
cific attraction (Ray et al. 1991), and nonrandom migration among local popula- 
tions. Although our deterministic models do not include these factors explicitly, 
it is not unreasonable to interpret low values of the colonization parameter 1 as 
reflecting such real-life complications. 

Suppose now that all patches are identical, that is, have the same carrying 
capacity yo. Then n(y) = 8(y - yo), the Dirac measure concentrated at yo, and 
P(yo) = 1. The solution p(t,x,y) is of the form j6(t,x)8(y - yo), where the local 
population size distribution p(t,x) satisfies our other equations (Gyllenberg and 
Hanski 1992). Thus the model (eqq. [13]-[15]) contains the system of identical 
patches as a special case. 

The structured model of identical patches contains the Levins model as a spe- 
cial case. To see this, assume that the colonization, emigration, and extinction 
rates 1, -y, and ji are all constants; that is, all patches are equal and the rates are 
independent of local population sizes. Integrating equation (13) with respect to 
patch size y and local population size x and taking into account the boundary 
condition (14), one finds that the fraction 

P(t) := f fp(t,x,y)dydx (16) 

of occupied patches satisfies the ordinary differential equation 

d P(t) = 1D(t)[l - P(t)] - [LP(t), (17) 
dt 

and the balance equation (15) for migrants becomes 

dt dt()= -(cr + v)D(t) + yP(t). (18) 

Assume now, as is tacitly done in the derivation of the original Levins model, 
that local dynamics are much faster than the dynamics at the metapopulation 
level; that is, the rates ox, v, and -y are much greater than the rates 1 and p.. The 
number of migrants per patch will then be in a quasi-steady state given by 

D(t) = + P(t) (19) 

A change in P is immediately reflected in a change in D according to equation 
(19). Substituting equation (19) into equation (17), one obtains the Levins model 
(eq. [3]), with m = P-y/(ot + v) and e = p. 

In the subsequent analysis of the model (eqq. [13]-[15]) we assume that the 
patch-size distribution is not continuous but that there are only two types of 
patches, small and large ones. We call the small patches "islands" and denote 
their carrying capacity by Yl. The carrying capacity of the large patches is denoted 
by Y2. The patch-size distribution is then given by 

n(y) = qb(y - Yi) + (1 - q)b(y - Y2), (20) 

where q E (0,1) is the fraction of small patches (islands). 
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The structured model (eqq. [13]-[15]) can also describe, as an extreme case, a 
mainland-island constellation. To see this, assume that the patch-size distribution 
n is given by equation (20), where Y2 is much greater than Y,. The large patches 
together represent the mainland. We further assume that pL(x,y2) = 0-that is, 
the population on the mainland does not go extinct-and that 4'(Y2) = 0, which 
means that there is no migration from the islands to the mainland. 

The solution p(t,x,y) is now of the form 

p(t,x,y) = qp61(t,x)8(y - y) + (1 - q)P2(t,x)8(y - Y2), 

where 31(t,x) and i32(t,x) are the population-size distributions on islands (small 
patches) and the mainland (large patches), respectively. We assume that the main- 
land is initially inhabited; that is, none of the large patches is empty. Therefore, 
for the component describing the large patches, the right-hand side of equation 
(14) is exactly zero, and the populations of the large patches all grow to x(y2), 
which is the root of the equation 

g(x,Y2) - *(X,Y2) = 0. (21) 

Since the component of equations (13) and (14) describing the change in I32(t,x) 
is independent of D (recall that '[Y2] = 0), we may assume that the equilibrium 
x(y2) of the large patch populations has already been reached and that we have 
a constant mainland population of size (1 - q)x(y2). The equation for D now 
becomes 

dLD(t) = -(ac + v)D(t) + F + qf wy(x,yj)j5i(t,x)dx, (22) 

where F = (1 - q)yxA(y2),y2] is the constant rate of emigration from the mainland. 
We shall refer to this variant of the model as the structured mainland-island 
model. If -y(x,yl) = 0, there is no migration among the islands and we have a 
pure mainland-island model, whereas, if y(x,yl) $X 0, there is migration among 
the islands. If one assumes that local dynamics take place on a much faster time 
scale than metapopulation dynamics and that there is no migration among islands, 
equations (13) and (14) can be replaced by equation (17) and equation (22) by 

D(t)= F (23) 
ox + v 

Substitution of equation (23) into equation (17) yields the original mainland-island 
model (eq. [2]) of MacArthur and Wilson (1967), with m = rF/(cx + v) and e = >. 

The general metapopulation model (eqq. [13]-[15]) contains a variety of inter- 
mediate cases between a pure mainland-island model and the case of identical 
patches. 

An equilibrium solution or steady state is a time-independent solution 

and p(t,x,y) = p*(x,y) (24) 
D(t) = D* 

for all t. 
We show in the Appendix that a necessary and sufficient condition for D* to 

be a nontrivial equilibrium level of migrants per patch is that it satisfies the 
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FIG. 6. -Equilibria of the structured model, eqq. (13)-14), for four combinations of param- 
eters: a, q = 0.8 (80% of the patches are small), Y2 = 100 (large patches are 10 times greater 
than small patches); b, q = 0.996 (99.6% of the patches are small), Y2 =100; c, q = 0.8, Y2 
= 40 (large patches are 4 times greater than small patches); and d, q =0.996, Y2 =40. The 
other parameters have the following values: Yi = 10, v = 0.1, a = 1, k = 0.6, r = 1, and 
[(x) = e-023x. Note the different scales on the horizontal axis. These bifurcation diagrams 
give the equilibrium fraction of patches occupied (P*) as a function of the colonization rate 
(f). Branches marked with the letter s correspond to stable equilibria, and branches marked 
with u correspond to unstable equilibria. Note that in each case there are alternative stable 
equilibria for a limited range of B values. In a, the upper branch (stable equilibria) approaches 
monotonically the asymptote P* = 1 as ,3 tends to infinity. In b the lower stable branch 
bifurcates from the trivial equilibrium (P* = 0) at ,B = 0.001. 
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transcendental equation 

R(D*) : = 1 E(,D1d =+ (25) 
+* J+ I 3(y)D*l(y,D*) E(yD*)dy 1, 

where l(y,D) is the expected lifetime of and E(y,D) is the expected number of 
migrants produced by a local population inhabiting a patch of carrying capacity 
y, when there are D migrants per patch. It is further shown that, for each equilib- 
rium value D*, the corresponding equilibrium proportion P* of occupied patches 
is given by 

p * (y)D*(y ,D*)n(y) dy. (26) 

If the dynamics at the level of local populations are fast compared with the 
dynamics at the metapopulation level, we can make the approximation that the 
population of a newly colonized patch instantaneously grows to its equilibrium 
size x = x(y,D), obtained by putting dx/dt = 0 in equation (12) and solving for 
x (see Gyllenberg and Hanski 1992). We also assume that the extinction rate p. 
is a function of local population size x only. With this approximation we have 

l(y,D) = /l[x1(y,D)] (27) 

and 
E(y,D) = -y[L(y,D)]/pl[.x(y,D)] . (28) 

Assuming equations (27) and (28), logistic growth (eq. [8]), and density- 
independent emigration (eq. [9]), we investigated two special cases of the model: 

1. The structured model (eqq. [13]-[15]) with patch-size distribution of the 
form in equation (20). We assumed that the extinction rate p. decreases 
rapidly with increasing population size, that migrants choose their new patch 
at random (4,[y] 1), and that colonization is independent of patch size 
(,B[y] constant). 

2. The structured mainland-island model. 

The main difference between case 1 and case 2 is that in case 1 there is migra- 
tion among all patches, including migration from the small to the large ones, 
whereas in case 2 there is only migration from the mainland to the islands and, 
if -y > 0, among islands. 

Figures 6-9 summarize the key results in the form of bifurcation diagrams. 
Figures 6 and 7 are for case 1 and use the colonization rate I and the size ratio 
Y21YI of large to small patches, respectively, as bifurcation parameters. Figures 8 
and 9 are for case 2, with the migration rate F from the mainland to islands and 
the emigration rate k varying as shown in the figures. 

An increase in the fraction of large patches (1 - q), which support local popula- 
tions with a low extinction probability, allows metapopulation persistence with a 
lower value of the colonization parameter I (fig. 6). In figure 6a migration among 
the large populations creates two alternative equilibria. With increasing coloniza- 
tion rate a monotonically increasing fraction of small patches becomes occupied, 
but emigration from large patches dominates the migration process. In figure 6b 
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FIG. 7.-As fig. 6 but the fraction of occupied patches at equilibrium (P*) is now plotted 
against the size ratio of large to small patches (Y2/Y1). In a, the fraction of small patches is 
smaller (q = 0.8) than in b (q = 0.996). The other parameters have the following values: v 
= 0.1, = 1,,3 = 0.106,k= 0.6, r = 1, YI = 10, and pL(x) = e-023x 
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FiG. 8.-Bifurcation diagrams for the structured mainland-island model with migration 
among the island populations. In a, 3 = 0. 1, and in b, P = 0.11. The other parameter values 
are as follows: aY = 1, k = 0.6, r = 1, R(x) = e-23x, v = 0.05, and Yi = 10. For other 
explanations see fig. 6. 

the fraction of large patches is very small; there is no rescue effect among the 
large patches, but there is a rescue effect in the entire system of small and large 
patches; that is, migration among the small patches also contributes to the rescue. 
In this case there are two alternative stable, nontrivial equilibria. Figure 6c and 
d gives analogous results for a smaller ratio of Y21YI 

Figure 7 demonstrates how the size ratio of large to small patches influences 
the dynamics of the metapopulation. The parameters were chosen in such a way 
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FIG. 9.-Bifurcation diagrams for the structured mainland-island model with migration 
among the island populations. The following parameter values are the same in all four cases: 
a = 1, r = 1, and F = 0. 1. In a and b extinction of local populations is density-dependent: 
(x) = e-023x; in c and d extinction is density-independent (pL = constant). In a mortality 

during migration is high (v = 0.5) and colonization rate is low ( = 0.1). In b mortality 
during migration is low (v = 0.05) and colonization rate is low ( = 0.1). In c and d there 
is no mortality during migration (v = 0) and colonization rate is high ( = 1). In c, ff = 
2.7, and in d, ff = 0.1. For other explanations see fig. 6. 

that metapopulation persistence is not possible if all patches are the same size. 
As the size of the large patches increases, the survival probability of their popula- 
tions also increases, and a stable, nontrivial equilibrium appears (fig. 7). The 
bifurcation pattern depends on the fraction of large patches. In figure 7b the 
fraction of large patches is very small (0.4%), the rescue effect is negligible even 
for quite large values of Y21YI, and the trivial solution (metapopulation extinction) 
remains the only equilibrium. For even larger Y2 the extinction probability in the 
large patches becomes finally so small that a stable equilibrium emerges, with a 
small fraction of patches occupied, most of which are large ones. The rescue 
effect now becomes stronger with an increasing fraction of small patches occu- 
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pied, and for a range of Y2 values there are alternative stable, nontrivial equilibria. 
When the fraction of large patches is greater (20% in fig. 7a), the situation is 
different. A critical increase in Y2 immediately rescues many small populations, 
and there are no alternative stable, nontrivial equilibria (fig. 7a). 

The result in figure 8 indicates how increasing migration rate from the mainland 
increases the fraction P* of islands occupied. In figure 8a the colonization rate 
p3 is so small that without migration from the mainland (F = 0) the entire meta- 
population of islands would go extinct. Figure 8b gives an example in which 3 is 
so large that the metapopulation of islands can persist even without migration 
from the mainland. If F = 0, the trivial equilibrium is stable, but, for positive 
values of F, the trivial solution is unstable, and the metapopulation of islands will 
not go extinct. Observe that once again there is a possibility for alternative stable 
equilibria. 

One might expect that increasing migration among local populations would 
always increase the fraction of patches occupied. Figure 9 shows that this is not 
so. An increase in the emigration rate k has two opposing consequences. On the 
one hand, it increases the number of migrants and hence strengthens the rescue 
effect. On the other hand, a very heavy emigration will make local populations 
smaller and hence more vulnerable to extinction. As shown in figure 9, the rela- 
tions among k, 3, the mortality v during migration, and extinction pt of local 
populations determine which effect is stronger. Note that if there is no migration 
among islands (k = 0), we have a pure mainland-island model with a unique 
nontrivial equilibrium D* = F/(c- + v). Thus migration among islands is a neces- 
sary condition for alternative equilibria. Alternative stable nontrivial equilibria 
may occur even if the extinction rate is density-independent (pt = constant) and 
there is no mortality during migration (v = 0) (see fig. 9d). 

COMPARISON OF THE SIMPLE AND STRUCTURED MODELS 

Both the simple model (eq. [5]) and the structured model (eqq. [13]-[15]) gener- 
alize the Levins model (eq. [3]) and the mainland-island model (eq. [2]) to situa- 
tions in which there is spatial variation in patch sizes. The simple model is similar 
in spirit to the Levins model and the mainland-island model in ignoring local 
dynamics and in focusing on the fraction of occupied patches, P. The model is 
nonmechanistic, but it captures the key consequences of spatial variation in patch 
sizes on the dynamics of P. 

The structured model is very different. It is based on a detailed mechanistic 
description of the dynamics of local populations incorporating growth, emigra- 
tion, and immigration. The dynamics of migrants are modeled separately. The 
colonization and extinction rates are not modeled, unlike in the simple model, as 
functions of the fraction of occupied patches. Instead, colonization depends on 
the number of migrants, and extinction is a function of the size of the local 
population and the patch's carrying capacity. 

The difference between the two models is apparent in the way the rescue effect 
enters the model. In the simple model, the rescue effect was introduced in a 
purely ad hoc fashion by postulating that the extinction rate decreases exponen- 
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tially with an increasing fraction of occupied patches P. In the structured model 
the rescue effect is not assumed but is a consequence of the model dynamics. 
Local extinction is assumed to be a decreasing function of population size. An 
increase in the fraction of occupied patches will lead, on the average, to an 
increase in the number of migrants, which in turn increases immigration; hence, 
local populations become larger and experience a lower risk of extinction. Thus 
the structured model serves as a mechanistic explanation of the rescue effect. 

As a matter of fact, the explicit assumption of the simple model that extinction 
is a decreasing function of P need not be valid in real metapopulations under all 
circumstances. To see this, assume that a fraction P of the patches are occupied 
by large local populations. The extinction rate per occupied patch is then almost 
zero. If, on the other hand, a fraction P' of the patches are occupied but all local 
populations are small, then the extinction rate per patch may be quite large even 
if P' > P. 

Another limitation of the simple model is that the parameter b cannot be pre- 
cisely interpreted. It describes spatial variation in patch sizes but includes both 
the fraction of the large patches and the size ratio of large to small patches. In 
the structured model, these two quantities are modeled separately, with q and 
Y21YI, respectively. Nonetheless, in both models increasing spatial variation in 
patch sizes by increasing the importance of large patches allows metapopulation 
persistence with a lower rate of colonization: the metapopulation persists because 
of low extinction rate in the large patches. Similarly, in both models increasing 
the importance of immigration in local dynamics (strengthening the rescue effect) 
generates the possibility of alternative, stable equilibria. In both models alterna- 
tive stable equilibria are generated by the rescue effect, that is, the increasing 
immigration rate per patch and hence the decreasing probability of local extinc- 
tion, with increasing fraction of patches occupied. The simple model exhibits the 
same key qualitative behavior as the more realistic structured model. We there- 
fore conclude that the unstructured model (eq. [5]), though it is not a formal 
approximation of the structured model (eqq. [13]-[15]), may nonetheless be used 
as a convenient phenomenological model of metapopulations with spatial varia- 
tion in patch sizes. 

THE CORE-SATELLITE SPECIES HYPOTHESIS 

Many assemblages of plants and animals show a bimodal distribution of site 
occupancy frequencies, denoted by P in our models. In other words, the majority 
of species occur, at any one time, either in all or most sites- suitable for the species 
or only in a few sites. Figure 10 gives four examples. We refer to such bimodal 
distributions of P values in species assemblages as core-satellite (species) distri- 
butions (Hanski 1982a). An earlier article (Hanski 1982a) described a simple meta- 
population dynamic model, which predicted the core-satellite distribution for a 
range of parameter values. Generalizing this work, we refer to any metapopula- 
tion dynamic explanation of core-satellite distributions as the core-satellite (spe- 
cies) hypothesis. Below, with the help of the models analyzed in this article, 
we discuss the related metapopulation dynamic mechanisms that may yield the 
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FIG. 1o.-Examples of bimodal core-satellite distributions of P values: a, anthropochorous 
plants inhabiting small villages surrounded by forest (Linkola 1917; see also Hanski 1982b); 
b, British butterflies (data from Pollard et al. 1986; see analysis in Hanski et al. 1993); c, 
intestinal helminths in three species of grebes (pooled data for Aechmophor-us occidentalis, 
Podiceps griseigena, and Podiceps nigricollis; Stock 1985; see also Stock and Holmes 1988); 
and d, cynipine gall wasps on oaks (pooled data for Quercuts lobata, Quercus cht-ysolepis, 
Quiercus douglasii, and Quercus agr-ifolia; Cornell 1985). 

core-satellite distribution. But, before doing that, let us briefly review the two 
alternative hypotheses that have been suggested in the literature for core-satellite 
distributions. 

Raunkiaer (1934) and Williams (1950) suggested that bimodality is an artifact 
of sampling, as P is constrained to be equal to or less than unity. They also 
pointed out that the shape of the distribution of P values depends on the spatial 
scale of sampling. Their argument is based on the assumptions that individuals 
are randomly distributed in space and that the mean abundances of the different 
species are lognormally distributed. Sampling and the spatial scale are indeed 
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important considerations when one attempts to explain the distribution of species' 
frequencies in, for example, quadrat samples taken from a homogeneous vegeta- 
tion (Hanski 1982b), but it is more difficult to see the relevance of the sampling 
hypothesis in the case of genuine metapopulations consisting of local populations 
with relatively independent dynamics. Nonetheless, when dealing with natural 
populations with often complex and unknown spatial structure, it is clearly impor- 
tant to be alert to artifacts of sampling and spatial scale. We assume in the 
following that problems of sampling can be avoided, as is the case in models. 

Brown (1984) suggested that bimodality results from some species being gener- 
alists and therefore present in most habitat patches, while others are specialists 
and are therefore confined to a small number of patches (the other patches are 
unsuitable for them). However, the core-satellite species hypothesis attempts to 
explain the distribution of species that may occupy the same set of habitat 
patches, and habitat specialization is therefore not a directly relevant issue. Fur- 
thermore, even if one were to examine the distribution of species in two or 
more kinds of patches, it is not obvious why interspecific differences of the type 
conceived by Brown (1984) should necessarily yield a bimodal distribution of P 
values. 

The third explanation of the core-satellite distributions, metapopulation dynam- 
ics, was first suggested in two earlier articles (Hanski 1982a, 1982b) that demon- 
strated how bimodality may result from stochastic metapopulation dynamics. The 
rest of this article is restricted to metapopulation dynamic explanations of bimodal 
distributions of P values. We shall first review the original core-satellite species 
hypothesis (Hanski 1982a) and then describe the implications of the present mod- 
els for bimodal distributions of P values. 

To obtain the original core-satellite species model, equation (3) was modified 
by assuming that, because of a strong rescue effect, the extinction rate per occu- 
pied patch decreases linearly to zero with increasing fraction of patches occupied 
(Hanski 1982a). With this assumption, equation (3) simplifies to the logistic 
model, dPldt = m'P(l - P), where m' = m - e. This model has a stable 
equilibrium point at P = 0 for negative m' and at P = 1 for positive m'. Assuming 
now that m' is a random variable with variance much greater than the mean 
value, it can be shown that the expected distribution of P values in the long 
course of time is bimodal, P being most of the time close to one or close to zero. 
This result implies that, in an assemblage of species occupying the same set of 
habitat patches, most species are either common (P close to one) or rare (P close 
to zero) at any one point in time (Hanski 1982a). For some parameter values all 
species may be rare, or common, but in no case should the majority of species 
have an intermediate value of P, assuming that all patches are suitable for coloni- 
zation by all species. 

There are two apparent difficulties with the original core-satellite species hy- 
pothesis. First, the model assumes migration from outside the metapopulation to 
compensate for metapopulation extinctions of rare species (Hanski 1982b). This 
may be an unreasonable assumption, because regionally rare species are often 
rare also in the neighboring regions, and hence no or only a few individuals may 
be expected to migrate between the regions (Brown 1984). But in other cases a 
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metapopulation may be located next to a mainland, a large expanse of suitable 
habitat with a large and practically invulnerable population, from which a continu- 
ous flow of migrants may reach the metapopulation and prevent metapopulation 
extinction. Another criticism of the original model is that species often are not 
observed to switch from the core (P close to 1) to the satellite state (P close to 
0), and vice versa, as predicted by the model (Lawton and May 1983; Gaston and 
Lawton 1989). However, such switches may not be uncommon in mainland-island 
systems with migration among the islands (to generate the rescue effect). It has 
been observed in several mainland-island systems that colonization and/or extinc- 
tion events on islands are very much correlated (Harrison 1991; Peltonen and 
Hanski 1991; Solbreck 1991), which is another way of saying that there is much 
temporal variation in the respective rates. 

To summarize, the original core-satellite species model was based on a strong 
rescue effect, it was constructed as a multispecies extension of a stochastic single- 
species model, and it required migration from outside the metapopulation to com- 
pensate for the otherwise inevitable metapopulation extinctions of rare species. 
We shall now turn to the implications of the present models, which are structur- 
ally more complex but also more realistic than the original model. 

There are two main differences between the original model and the present 
ones, though both differences are more apparent than real. First, the original 
concept was based on a stochastic model, as described above, whereas the pres- 
ent ones are deterministic models. However, the original model dPldt = m'P 
(1 - P) generates deterministically a clear-cut dichotomy between core (P* = 
1) and satellite species (P* close to zero) in an assemblage of species, with some 
species having positive and some negative values of m', and assuming that there 
is migration from outside the metapopulation to prevent extinctions of the satellite 
species. Second, in the original model the deterministic equilibrium fraction of 
occupied patches, P*, may attain only two values, zero and one, and at a critical 
value of m' (at zero) P* jumps abruptly from the lower equilibrium point to the 
upper one. In contrast, in the models analyzed in this article, P* may attain any 
value between zero and one, if there is only one stable equilibrium, or P* may 
have values from zero to one but excluding a range of intermediate values, if 
there are alternative stable equilibria. In the former case, and when the rescue 
effect is strong, there is a narrow range of parameter values within which P* 
increases rapidly, corresponding to the jump from zero to one in the original 
model. Therefore, in an assemblage of species, the distribution of P values is 
likely to be bimodal, because most parameter values lead to either a low or a 
high value of P. Only if all species have a very low or a very high value of the 
critical parameter(s) can there be no bimodality, and all species have a small or 
a large value of P. If there are alternative stable equilibria, as in many of the 
examples in figures 3-9, the tendency toward bimodality is even stronger, as 
some intermediate P* values, corresponding to unstable positive equilibria, repel 
rather than attract P. Now bimodality may also occur in an assemblage of identi- 
cal species, as in the original model, if different species happen to be at different 
equilibria. In this case, a perturbation may push species from one equilibrium to 
another and produce core-satellite switching. 
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The original model required migration from outside the metapopulation (from 
a mainland) to prevent metapopulation extinctions. The present models demon- 
strate an obvious alternative: if local extinction probability is sufficiently low in 
some patches, because they are large or have superior habitat quality, that may 
be enough to prevent metapopulation extinctions of rare species, and no outside 
migration is necessarily needed. 

The common feature of all these mechanisms is a strong rescue effect, under 
which most parameter values will generate either a small or a large value of P, 
and hence a bimodal distribution of P values in a species assemblage in which 
both kinds of species are represented. While drawing attention to this critical 
function of the rescue effect, we also remind the reader of the exact meaning of 
the term rescue effect as used in this article (see the section on the rescue effect). 
Very often, this term is used in a narrow sense to describe how immigration 
decreases the probability of local extinction (as in Brown and Kodric-Brown 
1977). In the mainland-island model without migration among the islands, there 
is this kind of rescue, due to migration from the mainland to the islands, but no 
possibility for alternative equilibria, because immigration rate per patch does not 
depend on P. Our rescue effect has two components: decreasing extinction rate 
with increasing immigration rate and increasing immigration rate with increasing 
value of P. Both components are required for the more complex dynamic reper- 
cussions described in this article. 

What are the situations in the real world in which we might expect the bimodal 
core-satellite distribution? First of all, as we have discussed, bimodality is funda- 
mentally due to a strong rescue effect: if there is no rescue effect, there should 
be no bimodality, at least not for the metapopulation dynamic reasons discussed 
in this article. Second, to have a bimodal distribution of P values in an assemblage 
of species, there must be appropriate temporal or interspecific variation in param- 
eter values, as we have discussed above. This is not a very restrictive require- 
ment, however, because only unusual variation in parameter values would pro- 
duce a unimodal distribution of P values with a peak between zero and one. 
Finally, there must be a mechanism that enhances metapopulation survival of 
rare (satellite) species. If the habitat patches are the same size and quality, this 
mechanism can be migration from outside the metapopulation, as in mainland- 
island situations. Alternatively, metapopulation extinction of rare species can be 
prevented or greatly slowed down by spatial variation in patch sizes or qualities, 
with the extinction probability being sufficiently low in some patches. 

Possible examples of the first situation are provided by many assemblages of 
macroparasites, with host individuals functioning as habitat patches. In this case 
all patches are roughly the same size, and additionally all patches (host individu- 
als) have a strictly finite lifetime. Many intestinal helminth communities show a 
tendency toward a bimodal distribution of incidence (fig. 10) (see also Bush and 
Holmes 1986b; Stock and Holmes 1988; Esch et al. 1990). There are no well- 
documented cases of core-satellite switching, but note that such switches do 
not need to be common if bimodality is not a result of alternative equilibria. 
Metapopulation extinction of rare species may be prevented by migration from 
other, sympatric host species. It is especially noteworthy and consistent with this 
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suggestion that among macroparasites specialist species tend to have a higher 
incidence (larger P) than generalists (Bush and Holmes 1986a, 1986b), contrary 
to the pattern in many free-living animals and plants (Brown 1984; Hanski et al. 
1993). Apparently only those specialist parasites that have a large probability of 
permanently staying as core species have viable metapopulations. Constantly 
large P may be achieved in parasites via high transmission rate (large m and I in 
our models). 

Contrary to parasites, most free-living animals and plants, for instance the ones 
included in figure 10, inhabit systems of habitat patches with much spatial varia- 
tion in patch sizes (Harrison 1991), which should greatly decrease the risk of 
metapopulation extinction. Strong rescue effects may generate the bimodal core- 
satellite distribution also in these cases. The key prediction of all these models 
is that bimodal P distributions are associated with a strong rescue effect. 
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APPENDIX 
EQUILIBRIUM FRACTION OF PATCHES OCCUPIED 

In this Appendix we derive the equilibrium condition (25) and the expression (26) for 
the equilibrium fraction of patches occupied. We employ the notation introduced in the 
main text. 

We first show that at equilibrium all local populations are smaller than a bound x that 
depends on the carrying capacity and the number of migrants per patch. To see this, 
observe that, since a local population will decrease if x > x, where x = xc(y,D) is the root 
of the equation 

g(xk,y) - y(G,y) + otj(y)D = 0, (Al) 

and since there is no source term in equations (13) and (14) in the region x > x(y,D*), it 
is clear that 

p*(x,y) = O forx > x(y,D*). (A2) 

The equilibrium distribution of empty patches is denoted by e*(y). From equations (7) and 
(A2) we have 

x(y ,D *) 
e*(y) = n(y) - p*(x,y)dx. (A3) 

Putting dp*lat = 0, dD*Idt = 0 in the equations (13)-(15), one obtains 

p*(x,y) = r(y)D*e*(y)4!(x,y,D*), (A4) 
where 

+(x,y,D) = 1 exp f y (y)d+ (A) ) 
g(x,y) - y(x,y) + otj(y)D ~ ig(~,y) - y(~,y) + otq(y)D (5 
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and 
1 1X (Y,D*) f +y y(x,y)p*(x,y)dxdy. (A6) 

ot + v11 

Substituting equation (A4) into equation (A3) and solving for e*(y), one obtains 

e*( ) = n(y) (A7) 
e*y I + r3(y)D*l(y,D*)' (7 

where 

1(y,D) f x(D ,D)dx (A8) 

is the expected lifetime of a local population inhabiting a patch of size y when the number 
of migrants per patch is held fixed at D. Substitution of equation (A7) into equation (A4) 
and substitution of the so-obtained expression for p*(x,y) into equation (A6) yields 

1 + v J 51 + 3(y)D(y) E(y,D*)dy, (A9) 
ot + I r3(y)D*l(y,D*) 

where 
x(y,D) 

E(y,D*) = y(x,y)+(x,y,D)dx (AlO) 

is the expected number of migrants produced by a local population inhabiting a patch of 
size y during its lifetime when the number of migrants per patch is held fixed at D. As a 
matter of fact, instead of equation (A9) one obtains the same equation where both sides 
are multiplied by D*, but, since we are interested in nontrivial equilibria (i.e., equilibria 
with D* # 0), we were allowed to divide by D*. Equation (A9) is a necessary and sufficient 
condition for a nontrivial equilibrium. Once D* has been solved from equation (A9), the 
distribution e*(y) of empty patches is obtained from equation (A7) and finally the distribu- 
tion p*(x,y) of occupied patches from equation (A4). Integrating the expression (A4) with 
respect to x and y and using equations (A3) and (A5), one obtains the expression 

p* p(y)D*l(y,D*)n(y) dy (Al 1) 

for the proportion P* of occupied patches at equilibrium. 
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